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Regio- and Stereoselective Hydrosilylation of 1,4-Bis(trimethylsilyl)-3-buten-1-ynes
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Four kinds of regio- and stereoisomers of hydrosilylation
products of 1,4-bis(trimethylsilyl)-3-buten-1-yne (1) could be
independently prepared in over 93% selectivities by proper
choice of catalysts and cis and trans geometries of 1.

Catalytic hydrosilylation of conjugated enynes has been
investigated by several research groups and shown to give
allenylsilanes and dienylsilanes, which are useful intermediates
in organic synthesis.] We have been interested in the use of cis
and trans isomers of 1,4-bis(trimethylsilyl)-3-buten-1-ynes (cis-
1 and trans-1, respectively) as substrates of catalytic hydro-
silylation, because both isomers are readily accessible from a
common starting material, (trimethylsilyl)acetylene.1¢:2.3 It has
been expected that the difference in the geometry of starting
enynes (cis or trans) would be reflected in the regio- and stereo-
chemistries of the reaction, leading to the selective synthesis of
isomers of hydrosilylation products. We report herein that such
reactions could be realized in high selectivities by proper choice
of hydrosilylation catalysts.

Scheme 1 outlines the results. One of the most interesting
findings in this study is an alteration in the regiochemistry (1,4-
or 1,2-addition) depending on the trans and cis geometries of
enynes, that was observed for the platinum-catalyzed reactions.
Another point should be noted is clear dependence of the stereo-
chemistry upon the geometries in the rhodium-catalyzed
reactions; cis-1 and trans-1 gave anti- and syn-addition products
4 and §, respectively.

The representative data are listed in Table 1. Treatment of
cis-1 with HSiMe,Ph (1.1 equiv.) in the presence of a catalytic
amount of H,PtClg-6H,O (0.5 mol%) led to 1,4-addition of
hydrosilane across the enyne skeleton to give allenylsilane 2 in
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96% selectivity (Entry 1). Almost the same selectivity for
allenylsilane formation was observed with HSiMePh, in place
of HSiMe,Ph, though the reactivity of HSiMePh, was consid-
erably lower than that of HSiMe,Ph.4:5 On the other hand, the
platinum-catalyzed hydrosilylation of trans-1 with HSiMe,Ph
mainly provided 1,2-addition product 3 (Entry 2).6

In the rhodium-catalyzed reactions, 1,2-addition of hydro-
silane across the triple bond took place for both enyne isomers
(Entries 3-5). It was noted that the orientation of addition
observed for the rhodium-catalyzed systems was opposite to the
platinum-catalyzed 1,2-addition of trans-1 (Entry 2). The selec-
tivity was highly sensitive to the sort of catalyst employed and
RhH(CO)(PPh3)3 was the only rhodium complex that provides
over 90% selectivities.” Although the reaction of trans-1 with
HSiMe,Ph gave only 81% selectivity of 5§ (Entry 4), the
selectivity could be improved to 96% by using HSiMePh,
(Entry 5).

The stereochemical courses of the rhodium-catalyzed
hydrosilylation were clearly dictated by the cis and trans
geometries of starting enynes. Of the reaction courses shown in
Scheme 1, the syn-addition to trans-1 giving 5 is a commonly
observed process for the catalytic hydrosilylation of acetylene
derivatives. On the other hand, the anti-addition to cis-1 to give
4 deserves a discussion. It should be noted that the anti-
addition involved cis to trans isomerization of the ene part of
cis-1. This phenomenon can be reasonably understood by the
hydrosilylation process in Scheme 2. The first step is syn-
addition of a silylrhodium species to the triple bond of cis-1 to
-afford a methylene-rt-allyl complex 6, which has a bulky
trimethylsilyl group at the anti position of the m-allyl moiety.
The steric demand in the anti-n-allyl complex 6 may be
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Scheme 1.
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Table 1. Catalytic hydrosilylation of trans- and cis-1,4-bis(trimethylsilyl)-3-buten-1-ynes (1) with HSiMe,Ph?

Entry Enyne Catalyst Reaction Product ratiob Total yield
time/h 2 3 4 5 1%
1 cis-1 H,PtClg-6H,O 2 96 4 0 0 93
2 trans-1 H,PtClg-6H,O 3 0 93 0 7 100
3 cis-1 RhH(CO)(PPh3); 19 0 0 95 5 98
4 trans-1 RhH(CO)(PPhj3); 19 10 0 9 81 96
5¢ trans-1 RhH(CO)(PPh3); 24 4 0 0 96 99

aAll reactions were examined with 0.5 mol% of catalyst and 1.1 equivalents per 1 of HSiMe,Ph at 80 °C without
solvent. PDetermined by TH NMR analysis of a mixture of the reaction products after separation of catalyst by
column chromatography (Al,O3, hexane). ¢The reaction was performed with HSiMePh, in place of HSiMe,Ph.

effectively reduced by its isomerization to the syn-n-allyl isomer
9 via allenylmethyl intermediates 7 and 8. As seen from the
scheme, the rhodium moiety is shifted from the syn position to
the anti position with respect to the R3Si group during the
isomerization. Therefore, after the oxidative addition of
hydrosilane to 9 followed by the reductive elimination of the
methylene-rt-allyl and hydrido ligands from 10, the anti-
addition product 4 is produced with the cis to trans
isomerization of the ene part.
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Supplementary Material (4 pages) including experimental
procedures and spectroscopic data of new compounds are
available on request to the author by facsimile (+81-6-605-
2978). '
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